

High Rate Deposition of nc-Si:H Solar Cells and Its Application in a-Si:H/nc-Si:H Multi-Junction Structure

Guozhen Yue, Baojie Yan, Jeffrey Yang,

and Subhendu Guha

United Solar Ovonic Corporation

Troy, Michigan

Outline

- 1. Estimation of the required deposition time for manufacturing
- 2. Existing method for high rate deposition and our approaches with previous results
- 3. Current statues for nc-Si:H single-junction and a-Si:H/nc-Si:H double-junction solar cells
- 4. Summary and future work

UNI-SOLAR®

Deposition time for nc-Si:H films as a function of the deposition rate. The shaded region represents the field of interest for solar cell production.

Existing method for high rate deposition

VHF glow discharge: 60-110 MHz

- Advantage: high rate with low ion bombardment
- Potential problem: Uniformity

RF glow discharge with high pressure and high power

- Advantage: high rate with low ion bombardment
- Potential problems: Uniformity, powder formation, narrow spacing between electrodes

VHF with high pressure and high power

• Advantages from both VHF and high pressure, but challenges also add together

Hot-wire

- High deposition rate with no ion bombardment
- Only limited positive results in the literature

Approaches at United Solar

Modified-VHF

- 1. 12.5%: a-Si:H/nc-Si:H double-junction structure
- 2. 13.8%: a-Si:H/a-SiGe:H/nc-Si:H triple-junction structures (bottom cell deposition time of 50 minutes)

RF glow discharge with high pressure and high power

- 1. 12.3%: a-Si:H/nc-Si:H double-junction structure(bottom cell deposition time of 60 minutes)
- 2. Currently, we are studying large-area deposition (G.G. will present)

UM-SOLAR®

Previous results of a-Si:H/nc-Si:H double-junction solar cells with different bottom cell deposition time.

Sample	Bottom time	Eff.	J_{sc} (mA/cm ²)		V_{oc}	FF
No.	(min.)	(%)	top	bottom	(V)	
11569	60	12.04	12.09	<u>12.07</u>	1.359	0.734
11635	50	12.33	<u>11.91</u>	11.99	1.392	0.744
11797	35	11.34	11.77	<u>10.73</u>	1.385	0.763
11835	30	11.35	11.19	<u>11.10</u>	1.406	0.727

a-Si:H/nc-Si:H double-junction cell with bottom cell deposition time of 50 minutes

UNI-SOLAR®

(a) Initial J-V characteristics and (b) quantum efficiency of an a-Si:H/a-SiGe:H/nc-Si:H triple-junction solar cell where the bottom cell was made by MVHF for 50 minutes.

New results with MVHF under high pressure

Typical J-V characteristics of nc-Si:H single-junction solar cells made at high deposition rates

Sample	J_{sc}	V _{oc}	FF	P _{max}
No.	(mA/cm^2)	(V)		(mW/cm^2)
13310	23.08	0.564	0.632	8.23
13348	22.72	0.544	0.660	8.16
13461	23.34	0.559	0.640	8.35
13474	23.43	0.558	0.628	8.21
13491	24.88	0.543	0.599	8.09

UM-SOLAR®

J-V characteristics of a nc-Si:H single-junction cell made with MVHF for 30 minutes of i-layer deposition time

UM-SOLAR®

Typical J-V characteristics of a-Si:H/nc-Si:H double-junction solar cells made at high deposition rates with 30 minutes of bottom i-layer deposition time

Sample	$J_{sc} (mA/cm^2)$		V _{oc}	FF	P_{max}
No.	Top	Bottom	(V)		(mW/cm^2)
13520	12.02	12.01	1.434	0.749	12.9
13528	12.00	12.17	1.445	0.755	13.1
13536	12.28	12.12	1.444	0.741	13.0

UNI-SOLAR®

J-V characteristics of an a-Si:H/nc-Si:H double-junction cell made with MVHF for <u>10</u> and <u>30</u> minutes of the top and bottom cell i-layers deposition time, respectively.

Key techniques for achieving high efficiency a-Si:H/nc-Si:H double-junction cells

1. Optimized nc-Si:H single-junction cell

- Hydrogen dilution profiling to control the microstructure evolution
- Proper treatment at the n/i and i/p interfaces
- Optimized doped layers

2. Optimized a-Si:H top cell

• Proper hydrogen dilution to control the a-Si:H close to but not over the transition to nanocrystalline regime

Summary and future work

- 1. We have achieved an initial active-area efficiency of 8.3% using a nc-Si:H single-junction cell with 30 minutes of i-layer deposition time
- 2. We have achieved an initial active-area efficiency of 13.1% using an a-Si:H/nc-Si:H double-junction cell with 10 and 30 minutes of the top and bottom cell *i*-layers deposition time
- 3. We are currently in the process of improving the cell efficiency further by optimizing the plasma parameters and cell structure
- 4. We are going to investigate the large-area deposition with MVHF at high rates

Thanks for the financial support from NREL and various technical supports from the team members